各种类型RLS自适应滤波算法的C++实现
头文件:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
/* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 2 or any later version. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. A copy of the GNU General Public License is available at: * http://www.fsf.org/licensing/licenses */ /***************************************************************************** * rls.h * * Recursive Least Square Filter. * * The RLS adaptive filter recursively finds the filter coefficients that * minimize a weighted linear least squares cost function relating to the * input signals. This in contrast to other algorithms such as the LMS that * aim to reduce the mean square error. * * The input signal of RLS adaptive filter is considered deterministic, * while for the LMS and similar algorithm it is considered stochastic. * Compared to most of its competitors, the RLS exhibits extremely fast * convergence. However, this benefit comes at the cost of high computational * complexity, and potentially poor tracking performance when the filter to * be estimated changes. * * This file includes five types usually used RLS algorithms, they are: * conventional RLS (rls), stabilised fast transversal RLS (sftrls), * lattice RLS (lrls), error feedblck lattice RLS (eflrls), * QR based RLS (qrrls). * * Zhang Ming, 2010-10, Xi'an Jiaotong University. *****************************************************************************/ #ifndef RLS_H #define RLS_H #include <vector.h> #include <matrix.h> namespace splab { template<typename Type> Type rls( const Type&, const Type&, Vector<Type>&, const Type&, const Type& ); template<typename Type> Type sftrls( const Type&, const Type&, Vector<Type>&, const Type&, const Type&, const string& ); template<typename Type> Type lrls( const Type&, const Type&, Vector<Type>&, const Type&, const Type&, const string& ); template<typename Type> Type eflrls( const Type&, const Type&, Vector<Type>&, const Type&, const Type&, const string& ); template<typename Type> Type qrrls( const Type&, const Type&, Vector<Type>&, const Type&, const string& ); #include <rls-impl.h> } // namespace splab #endif // RLS_H |
实现文件:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
/* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 2 or any later version. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. A copy of the GNU General Public License is available at: * http://www.fsf.org/licensing/licenses */ /***************************************************************************** * rls-impl.h * * Implementation for RLS Filter. * * Zhang Ming, 2010-10, Xi'an Jiaotong University. *****************************************************************************/ /** * The conventional RLS algorighm. The parameter "lambda" is the Forgetting * Factor, the smaller "lambda" is, the smaller contribution of previous samples. * This makes the filter more sensitive to recent samples, which means more * fluctuations in the filter co-efficients. Suggesting range is: [0.8, 1.0]. * The parametet "delta" is the value to initialeze the inverse of the Auto- * Relation Matrix of input signal, which can be chosen as an estimation of * the input signal power. */ template <typename Type> Type rls( const Type &xk, const Type &dk, Vector<Type> &wn, const Type &lambda, const Type &delta ) { assert( Type(0.8) <= lambda ); assert( lambda <= Type(1.0) ); int filterLen = wn.size(); Vector<Type> vP(filterLen); Vector<Type> vQ(filterLen); static Vector<Type> xn(filterLen); static Matrix<Type> invR = eye( filterLen, Type(1.0/delta) ); // updata input signal for( int i=filterLen; i>1; --i ) xn(i) = xn(i-1); xn(1) = xk; // priori error Type ak = dk - dotProd(wn,xn); vQ = invR * xn; vP = vQ / (lambda+dotProd(vQ,xn)); // updata Correlation-Matrix's inverse invR = (invR - multTr(vQ,vP)) / lambda; // update Weight Vector wn += ak * vP; // wn += ak * (invR*xn); return dotProd(wn,xn); } /** * Stabilized Fast Tranversal RLS */ template <typename Type> Type sftrls( const Type &xk, const Type &dk, Vector<Type> &wn, const Type &lambda, const Type &epsilon, const string &training ) { int filterLen = wn.size(), L = wn.size()-1; assert( Type(1.0-1.0/(2*L+2)) <= lambda ); assert( lambda <= Type(1.0) ); static Vector<Type> xn(filterLen), xnPrev(filterLen); const Type k1 = Type(1.5), k2 = Type(2.5), k3 = Type(1.0); // initializing for begin Type e, ep, ef, efp, eb1, eb2, ebp1, ebp2, ebp31, ebp32, ebp33; static Type gamma = 1, xiBmin = epsilon, xiFminInv = 1/epsilon; Vector<Type> phiExt(L+2); static Vector<Type> phi(filterLen), wf(filterLen), wb(filterLen); // updata input signal xnPrev = xn; for( int i=1; i<=L; ++i ) xn[i] = xnPrev[i-1]; xn[0] = xk; if( training == "on" ) { // forward prediction error efp = xk - dotProd(wf,xnPrev); ef = gamma * efp; phiExt[0] = efp * xiFminInv/lambda; for( int i=0; i<filterLen; ++i ) phiExt[i+1] = phi[i] - phiExt[0]*wf[i]; // gamma1 gamma = 1 / ( 1/gamma + phiExt[0]*efp ); // forward minimum weighted least-squares error xiFminInv = xiFminInv/lambda - gamma*phiExt[0]*phiExt[0]; // forward prediction coefficient vector wf += ef * phi; // backward prediction errors ebp1 = lambda * xiBmin * phiExt[filterLen]; ebp2 = xnPrev[L] - dotProd(wb,xn); ebp31 = (1-k1)*ebp1 + k1*ebp2; ebp32 = (1-k2)*ebp1 + k2*ebp2; ebp33 = (1-k3)*ebp1 + k3*ebp2; // gamma2 gamma = 1 / ( 1/gamma - phiExt[filterLen]*ebp33 ); // backward prediction errors eb1 = gamma * ebp31; eb2 = gamma * ebp32; // backward minimum weighted least-squares error xiBmin = lambda*xiBmin + eb2*ebp2; for( int i=0; i<filterLen; ++i ) phi[i] = phiExt[i] + phiExt[filterLen]*wb[i]; // forward prediction coefficient vector wb += eb1 * phi; // gamma3 gamma = 1 / ( 1 + dotProd(phi,xn) ); // Joint-Process Estimation ep = dk - dotProd(wn,xn); e = gamma * ep; wn += e * phi; } return dotProd(wn,xn); } /** * Lattice RLS */ template <typename Type> Type lrls( const Type &xk, const Type &dk, Vector<Type> &vn, const Type &lambda, const Type &epsilon, const string &training ) { assert( Type(0.8) <= lambda ); assert( lambda <= Type(1.0) ); int filterLen = vn.size(), L = filterLen-1; // initializing for begin Vector<Type> gamma(filterLen), eb(filterLen), kb(L), kf(L), xiBmin(filterLen), xiFmin(filterLen); static Vector<Type> delta(L), deltaD(filterLen), gammaOld(filterLen,Type(1.0)), ebOld(filterLen), xiBminOld(filterLen,epsilon), xiFminOld(filterLen,epsilon); // initializing for Zeor Order gamma[0] = 1; xiBmin[0]= xk*xk + lambda*xiFminOld[0]; xiFmin[0] = xiBmin[0]; Type e = dk; Type ef = xk; eb[0] = xk; for( int j=0; j<L; ++j ) { // auxiliary parameters delta[j] = lambda*delta[j] + ebOld[j]*ef/gammaOld[j]; gamma[j+1] = gamma[j] - eb[j]*eb[j]/xiBmin[j]; // reflection coefficients kb[j] = delta[j] / xiFmin[j]; kf[j] = delta[j] / xiBminOld[j]; // prediction errors eb[j+1] = ebOld[j] - kb[j]*ef; ef -= kf[j]*ebOld[j]; // minimum least-squares xiBmin[j+1] = xiBminOld[j] - delta[j]*kb[j]; xiFmin[j+1] = xiFmin[j] - delta[j]*kf[j]; // feedforward filtering if( training == "on" ) { deltaD[j] = lambda*deltaD[j] + e*eb[j]/gamma[j]; vn[j] = deltaD[j] / xiBmin[j]; } e -= vn[j]*eb[j]; } // last order feedforward filtering if( training == "on" ) { deltaD[L] = lambda*deltaD[L] + e*eb[L]/gamma[L]; vn[L] = deltaD[L] / xiBmin[L]; } e -= vn[L]*eb[L]; // updated parameters gammaOld = gamma; ebOld = eb; xiFminOld = xiFmin; xiBminOld = xiBmin; return dk-e; } /** * Error Feedback Lattice RLS */ template <typename Type> Type eflrls( const Type &xk, const Type &dk, Vector<Type> &vn, const Type &lambda, const Type &epsilon, const string &training ) { assert( Type(0.8) <= lambda ); assert( lambda <= Type(1.0) ); int filterLen = vn.size(), L = filterLen-1; // initializing for begin Vector<Type> gamma(filterLen), eb(filterLen), xiBmin(filterLen), xiFmin(filterLen); static Vector<Type> delta(L), deltaD(filterLen), gammaOld(filterLen,Type(1.0)), ebOld(filterLen), kb(L), kf(L), xiBminOld2(filterLen,epsilon), xiBminOld(filterLen,epsilon), xiFminOld(filterLen,epsilon); // initializing for Zeor Order gamma[0] = 1; xiBmin[0]= xk*xk + lambda*xiFminOld[0]; xiFmin[0] = xiBmin[0]; Type tmp = 0; Type e = dk; Type ef = xk; eb[0] = xk; for( int j=0; j<L; ++j ) { // auxiliary parameters delta[j] = lambda*delta[j] + ebOld[j]*ef/gammaOld[j]; gamma[j+1] = gamma[j] - eb[j]*eb[j]/xiBmin[j]; // reflection coefficients tmp = ebOld[j]*ef / gammaOld[j]/lambda; kb[j] = gamma[j+1]/gammaOld[j] * ( kb[j] + tmp/xiFminOld[j] ); kf[j] = gammaOld[j+1]/gammaOld[j] * ( kf[j] + tmp/xiBminOld2[j] ) ; // prediction errors eb[j+1] = ebOld[j] - kb[j]*ef; ef -= kf[j]*ebOld[j]; // minimum least-squares xiBmin[j+1] = xiBminOld[j] - delta[j]*delta[j]/xiFmin[j]; xiFmin[j+1] = xiFmin[j] - delta[j]*delta[j]/xiBminOld[j]; // feedforward filtering if( training == "on" ) vn[j] = gamma[j+1]/gamma[j] * ( vn[j] + e*eb[j]/(lambda*gamma[j]*xiBminOld[j]) ); e -= vn[j]*eb[j]; } // last order feedforward filtering if( training == "on" ) vn[L] = (gamma[L]-eb[L]*eb[L]/xiBmin[L])/gamma[L] * (vn[L]+e*eb[L]/(lambda*gamma[L]*xiBminOld[L])); e -= vn[L]*eb[L]; // updated parameters gammaOld = gamma; ebOld = eb; xiBminOld2 = xiBminOld; xiBminOld = xiBmin; xiFminOld = xiFmin; return dk-e; } /** * QR-RLS */ template <typename Type> Type qrrls( const Type &xk, const Type &dk, Vector<Type> &wn, const Type &lambdaSqrt, const string &training ) { int filterLen = wn.size(), fL1 = filterLen+1; // initializing for begin static int k = 1; Type dp, ep, gammap, c, cosTheta, sinTheta, tmp; static Type sx1; Vector<Type> xp(filterLen); static Vector<Type> xn(filterLen), dn(filterLen), dq2p(filterLen); static Matrix<Type> Up(filterLen,filterLen); // updata input signal for( int i=filterLen; i>1; --i ) xn(i) = xn(i-1); xn(1) = xk; if( training == "on" ) { // initializing for 0 to L iterations if( k <= filterLen ) { // updata Up for( int i=filterLen; i>1; --i ) for( int j=1; j<=filterLen; ++j ) Up(i,j) = lambdaSqrt * Up(i-1,j); for( int j=1; j<=filterLen; ++j ) Up(1,j) = lambdaSqrt * xn(j); dn(k) = dk; for( int i=filterLen; i>1; --i ) dq2p(i) = lambdaSqrt * dq2p(i-1); dq2p(1) = lambdaSqrt * dn(k); if( k == 1 ) { sx1 = xk; if( abs(sx1) > Type(1.0-6) ) sx1 = Type(1.0); } // new Weight Vector wn(1) = dn(1) / sx1; if( k > 1 ) for( int i=2; i<=k; ++i ) { tmp = 0; for( int j=2; j<=i; ++j ) tmp += xn(k-j+1)*wn(i-j+1); wn(i) = (-tmp+dn(i)) / sx1; } ep = dk - dotProd(wn,xn); k++; } else { xp = xn; gammap = 1; dp = dk; // Givens rotation for( int i=1; i<=filterLen; ++i ) { c = sqrt( Up(i,fL1-i)*Up(i,fL1-i) + xp(fL1-i)*xp(fL1-i) ); cosTheta = Up(i,fL1-i) / c; sinTheta = xp(fL1-i) / c; gammap *= cosTheta; for( int j=1; j<=filterLen; ++j ) { tmp = xp(j); xp(j) = cosTheta*tmp - sinTheta*Up(i,j); Up(i,j) = sinTheta*tmp + cosTheta*Up(i,j); } tmp = dp; dp = cosTheta*tmp - sinTheta*dq2p(i); dq2p(i) = sinTheta*tmp + cosTheta*dq2p(i); } ep = dp / gammap; // new Weight Vector wn(1) = dq2p(filterLen) / Up(filterLen,1); for( int i=2; i<=filterLen; ++i ) { tmp = 0; for( int j=2; j<=i; ++j ) tmp += Up(fL1-i,i-j+1) * wn(i-j+1); wn(i) = (-tmp+dq2p(fL1-i)) / Up(fL1-i,i); } // updating internal variables Up *= lambdaSqrt; dq2p *= lambdaSqrt; } return dk-ep; } else return dotProd(wn,xn); } |
测试代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
/***************************************************************************** * rls_test.cpp * * RLS adaptive filter testing. * * Zhang Ming, 2010-10, Xi'an Jiaotong University. *****************************************************************************/ #define BOUNDS_CHECK #include <iostream> #include <iomanip> #include <convolution.h> #include <vectormath.h> #include <random.h> #include <rls.h> using namespace std; using namespace splab; typedef float Type; const int N = 1000; const int orderRls = 1; const int orderLrls = 16; const int orderTrls = 12; const int orderQrrls = 8; const int sysLen = 8; const int dispNumber = 10; int main() { int start = max(0,N-dispNumber); Vector<Type> dn(N), xn(N), yn(N), sn(N), rn(N), en(N), hn(sysLen+1), gn(orderLrls+1), wn(orderRls+1); Type lambda, delta, eps; cout << "/************** Conventional RLS <---> Waveform Tracking \ *************/" << endl << endl; for( int k=0; k<N; ++k ) { dn[k] = Type(sin(TWOPI*k/7)); xn[k] = Type(cos(TWOPI*k/7)); } lambda = Type(0.99); delta = dotProd(xn,xn)/N; cout << "The last " << dispNumber << " iterations result:" << endl << endl; cout << "observed" << "\t" << "desired" << "\t\t" << "output" << "\t\t" << "adaptive filter" << endl << endl; for( int k=0; k<start; ++k ) yn[k] = rls( xn[k], dn[k], wn, lambda, delta ); for( int k=start; k<N; ++k ) { yn[k] = rls( xn[k], dn[k], wn, lambda, delta ); cout << setiosflags(ios::fixed) << setprecision(4) << xn[k] << "\t\t" << dn[k] << "\t\t" << yn[k] << "\t\t"; for( int i=0; i<=orderRls; ++i ) cout << wn[i] << "\t"; cout << endl; } cout << endl << "The theoretical optimal filter is:\t\t" << "-0.7972\t1.2788" << endl << endl << endl; cout << "/************** Lattice RLS <---> Channel Equalization \ ***************/" << endl << endl; for( int k=0; k<=sysLen; ++k ) hn[k] = Type( 0.1 * pow(0.5,k) ); dn = randn( 37, Type(0.0), Type(1.0), N ); xn = wkeep( conv(dn,hn), N, "left" ); lambda = Type(0.99), eps = Type(0.1); wn.resize(orderLrls); wn = Type(0.0); for( int k=0; k<N; ++k ) // yn[k] = lrls( xn[k], dn[k], wn, lambda, eps, "on" ); yn[k] = eflrls( xn[k], dn[k], wn, lambda, eps, "on" ); Vector<Type> Delta(orderLrls+1); Delta[(orderLrls+1)/2] = Type(1.0); for( int k=0; k<=orderLrls; ++k ) // gn[k] = lrls( Delta[k], Type(0.0), wn, lambda, eps, "off" ); gn[k] = eflrls( Delta[k], Type(0.0), wn, lambda, eps, "off" ); cout << setiosflags(ios::fixed) << setprecision(4); cout << "The original system: " << hn << endl; cout << "The inverse system: " << gn << endl; cout << "The cascade system: " << conv( gn, hn ) << endl << endl; // cout << "/************ Transversal RLS <---> System Identification \ ************/" << endl << endl; Vector<Type> sys(8); sys[0] = Type(0.1); sys[1] = Type(0.3); sys[2] = Type(0.0); sys[3] = Type(-0.2); sys[4] = Type(-0.4); sys[5] = Type(-0.7); sys[6] = Type(-0.4); sys[7] = Type(-0.2); xn = randn( 37, Type(0.0), Type(1.0), N ); dn = wkeep( conv(xn,sys), N, "left" ); lambda = Type(0.99), eps = Type(1.0); wn.resize(orderTrls); wn = Type(0.0); for( int k=0; k<start; ++k ) yn[k] = sftrls( xn[k], dn[k], wn, lambda, eps, "on" ); cout << "The last " << dispNumber << " iterations result:" << endl << endl; cout << "input signal" << " " << "original system output" << " " << "identified system output" << endl << endl; for( int k=start; k<N; ++k ) { yn[k] = sftrls( xn[k], Type(0.0), wn, lambda, eps, "off" ); cout << setiosflags(ios::fixed) << setprecision(4) << xn[k] << "\t\t\t" << dn[k] << "\t\t\t" << yn[k] << endl; } cout << endl << "The unit impulse response of original system: " << sys << endl; cout << "The unit impulse response of identified system: " << wn << endl << endl; cout << "/*************** QR Based RLS <---> Signal Enhancement \ ***************/" << endl << endl; sn = sin( linspace( Type(0.0), Type(4*TWOPI), N ) ); rn = randn( 37, Type(0.0), Type(1.0), N ); dn = sn + rn; int delay = orderQrrls/2; for( int i=0; i<N-delay; ++i ) xn[i] = rn[i+delay]; for( int i=N-delay; i<N; ++i ) xn[i] = 0; Type lambdaSqrt = Type(1.0); wn.resize(orderQrrls); wn = Type(0.0); for( int k=0; k<N; ++k ) yn[k] = qrrls( xn[k], dn[k], wn, lambdaSqrt, "on" ); en = dn - yn; for( int i=0; i<N/2; ++i ) { sn[i] = 0; rn[i] = 0; en[i] = 0; } cout << "The last " << dispNumber << " iterations result:" << endl << endl; cout << "noised signal\t\t" << "enhanced signal\t\t" << "original signal" << endl << endl; for( int k=start; k<N; ++k ) cout << setiosflags(ios::fixed) << setprecision(4) << dn[k] << "\t\t\t" << en[k] << "\t\t\t" << sn[k] << endl; cout << endl << "The SNR before denoising is: " << 20*(log10(norm(sn))/log10(norm(rn))) << " dB" << endl; cout << "The SNR after denoising is: " << 20*(log10(norm(en))/log10(norm(sn-en))) << " dB" << endl << endl; return 0; } |
运行结果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
/************** Conventional RLS <---> Waveform Tracking *************/ The last 10 iterations result: observed desired output adaptive filter -0.9010 0.4339 0.4339 -0.7975 1.2790 -0.9010 -0.4339 -0.4339 -0.7975 1.2790 -0.2225 -0.9749 -0.9749 -0.7975 1.2790 0.6235 -0.7818 -0.7818 -0.7975 1.2790 1.0000 0.0000 0.0000 -0.7975 1.2790 0.6235 0.7818 0.7818 -0.7975 1.2790 -0.2225 0.9749 0.9749 -0.7975 1.2790 -0.9010 0.4339 0.4339 -0.7975 1.2790 -0.9010 -0.4339 -0.4339 -0.7975 1.2790 -0.2225 -0.9749 -0.9749 -0.7975 1.2790 The theoretical optimal filter is: -0.7972 1.2788 /************** Lattice RLS <---> Channel Equalization ***************/ The original system: size: 9 by 1 0.1000 0.0500 0.0250 0.0125 0.0063 0.0031 0.0016 0.0008 0.0004 The inverse system: size: 17 by 1 0.6038 -0.0026 -0.0018 -0.0012 0.0008 0.0011 0.0011 -0.0009 8.7646 -5.0002 0.0000 0.0015 -0.0007 -0.0004 0.0014 0.0027 0.0048 The cascade system: size: 25 by 1 0.0604 0.0299 0.0148 0.0073 0.0037 0.0020 0.0011 0.0005 0.8767 -0.0618 -0.0309 -0.0153 -0.0077 -0.0039 -0.0018 -0.0006 0.0002 -0.0016 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 /************ Transversal RLS <---> System Identification ************/ The last 10 iterations result: input signal original system output identified system output 1.5173 -1.7206 -1.7206 -0.9741 -1.3146 -1.3146 -1.4056 -2.1204 -2.1204 -0.9319 -2.3165 -2.3165 -0.5763 -2.1748 -2.1748 0.4665 -1.2228 -1.2228 0.5959 0.7623 0.7623 0.5354 1.7904 1.7904 -0.4990 1.6573 1.6573 -1.1519 0.4866 0.4866 The unit impulse response of original system: size: 8 by 1 0.1000 0.3000 0.0000 -0.2000 -0.4000 -0.7000 -0.4000 -0.2000 The unit impulse response of identified system: size: 12 by 1 0.1000 0.3000 0.0000 -0.2000 -0.4000 -0.7000 -0.4000 -0.2000 0.0000 0.0000 -0.0000 -0.0000 /*************** QR Based RLS <---> Signal Enhancement ***************/ The last 10 iterations result: noised signal enhanced signal original signal 1.2928 -0.2263 -0.2245 -1.1740 -0.1998 -0.1999 -1.5808 -0.1748 -0.1752 -1.0823 -0.1469 -0.1504 -0.7017 -0.1039 -0.1255 0.3660 -0.0745 -0.1005 0.5205 -0.0628 -0.0754 0.4851 -0.0439 -0.0503 -0.5242 -0.0220 -0.0252 -1.1519 0.0058 0.0000 The SNR before denoising is: 17.5084 dB The SNR after denoising is: 121.1680 dB Process returned 0 (0x0) execution time : 0.187 s Press any key to continue. |